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ABSTRACT

1597 %

Spacewise variations in a random load field are often
neglected in computing the statistical properties of the
dynamic response of a structure to that field. A method
is given for determining whether such an approximation is
conservative or not, and for computing the correction which
should be used to take into account the spacewise variations
in the input field. The proposed method is based on the
determination of the response of the structure to a few
simple deterministic loadings and does not require the use
of muitidimensional power spectral analysis. It ylelds a
corrected valu€ for the power spectral density of the response,
from which values may be obtained for the mean square of the
response, as well as for other of its statistical characte-
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NOMENCLATURE

distance from center of beam to spring
support

half-length of beam

loading at point r and time t
deterministic loadings defined in Eq.(22)
function defined in Eq.(1l4). See also
Eqs. (26) and (27).

second moment of ¢fg5)w)o See Eq.(15)
transfer function for coherent loading
Multidimensional transfer function

Complex amplitude of responses to loadings
fi15 Ti,

vector of components ki

wave numbers

correlation length or scale of random field
mass of beam

response of system

mean square 6f response

mean square of response (simplified analysis)
positions vectors

coordinates

(w/wo)?

(a/b)?




correction

phase angles

Lk,

L ky

radius of gyration

position vector

correlation fucntion of load field
power spectral density of load field
power spectral density of response
power spectral density of response (simplified
analysis)

time intervals

frequency

natural frequency in translation



1. Introduction

It is known that the power spectral density ¢q(w) of
the response q(t) of a linear system to a stationary random

load f(t) may be expressed as
¢q(w) = |H(w) |2 ¢,(w) (1)

where Qf(w) is the power spectrai density of the load and
H(y) is the transfer function of the system. When the system
is subjected simultaneously at several polnts to a stationary

homogeneous. random load fileld fgigt) which varies in space
1,2

as well as in time, Eq.(1l) must be replaced by
0q (0) = =2 7 H(k,u)|2 0s(k,u) a% (2)
(2m)3 ~

where H and ¢y are functions of the wave numbers k,, k,, k

22 73

- defining the vector‘}’{\~ and of the frequency w. Whether
Eq.(1) or Eq. (2) is used to determine ¢4(w), the mean-square

value of the response may be expressed as

a2 = ;— [, og(w) du (3)
n

If the load field 1s not perfectly random spacewise, it

is generally possible to define a correlation length or scale
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L different from zero, When the largest dimension of the
system 1is small compared to L, as it occcirs in many cases of
practical interest (e.g. the resporse of an airplane to atmos-
pheric turbulence), it 5 »ften assumed“that the spacewise
variations in the load fleld may be neglected and Eq.(1l) is
used, Such an assumption leads to a conservative estimate

of the probabllity of survival of a structure subjected to a
random load field when the critical response q(t) depends
chiefly upon the even-order modes of vibration of the structure.
Indeed, this assumption is equivalent té that of complete
coherence of the load fileld at all input points and results

in a high estimate of g2, On the othef’hand, when the response
q(t) depends in a large measure on the odd-order modes of
vibration,; this assumption may well.leadito a low estimate of

Q2 since it does not make any allowance 'for the!possibility

of excitation of such modes.

We shall present in this paper a method for determining
whether the simplified analysis based on Eq.(1) leads to a
conservative estimate of the probability of survival of a
glven structure., We shall also indicate how the power spectral
density obtained from Eq.(l) and the correSpondiqg value of
the mean square of the response should be corrected to take
into account the effect of spacewise variations in the load

field, The method presented may be easily applied to the



analysls of the response of a large airframe to atmospheric

turbulence.

2. Approximate Expressions for the Corrections to the Power

Spectral Density and the Mean 3quare of the Response

Denoting respectively by ¢q0(w) arid q3 the power spectral
density and the mean square of the response obtained from the
simplified analysls based on Eq. (1), and by ¢4(w) and g2

the exact expressicns obtained from Eq.{(2), we define the

corrections
and
232 =32 -3 = ifn [ b 0g(u) do (5)
kit

The object of this section is to find approximate expressions

for these two corrections.

We first recall2 that the transfer function Hg&,w) used in

Eq.(2) is defined as the multiple Fourie€r transform

H(k,0) = [*_ his,o) e"tlE8*0) 435 44 (6)
AN N AAL

- of the response h of the system to a unit impulse applied at
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point‘aj and time t?o..The,vectcrﬂiland the scalar ¢ represent,
respectively, the differences s = 5:-=£i' and o =t - t',

where £~defines a reference point fixed in the system and t

the time at which the response 1s measured, It may be veri-
fied that Hgg,w) represents the complex amplitude of the

response of the system to the loading
£(r,t) = et lEonrot) (7

corresponding to a train of normal plane sinusoidal waves
~ of wave length 2n/|k| moving in the direction - k/|k| at
la"2 4 A L an
the speed w/h&jo When k is chosen equal to zero, this loa-
ANA

ding reduces to the coherent sinusoidal loading elot Thus
H(Oyw) = H(w) (8)
where H(w) is the conventional transfer function used in Eq.(1),

Similarly, the power spectral density ¢,(k,s) 1s defined
AN~

as the multiple PFourier transform

_ g . ~i(kop+twt) '
Qf(‘l\:’m) = f“m @f(ig) € A Ann dai d= (9)
of the correlation function &% of the load field in space and
in time, Taking the inverse transform in‘g‘of both members

of Eq.(9) and making p = 0 yilelds the relation

Ie'add
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- [2. ep(k,w) d% = [T @p0,1) ™19 41 = og(w) (10)
(27)3 oA e

where ?,(w) 1is the conventional power spectral density used
in Eq.(1). Since the correlation function @}(p,f) is an
even function of each of the components of ps 1ts transform
¢f(k,w) is similarly an even function of each of the wave
numbers kio We may thus write the following relations:

[ow Ky ¢.(Ky0) d%k =0 3 o &y ky 0.(k,0) a% =0 (1#])

(11)

We shall now expand the function IHQ&,w)IZ in a Taylor

series in the variables kic We write

3
| 3|10k, ) |2
[H(k,w) |2 = [H(0,w) |2 + ] [al’ s } Ky
- i=1 aki

3 3
b7 3 {aﬂn(g,@lq
2 151 3=1 L jcyoky K70

AA

ki kJ + o 00 (12)

Substituting into Eq.(2) and taking into account the relations

(11), we have

N i
0,(w) = |H(0,w) |2 oo belk,w) dik.
Q' ¥ l s l (21)3 I o LN
L3 Te2|H(k,w)|? L e
THE ) a’mw ,4] I kP e (k,0) a%
2 i=1 L aki A1£=0 (2")3 - A o~
+ o 0 0 (13)
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Recalling Eqs.(8) and (10), we observe that the first term
in the right-hand member of Eq.(13) represents the power

spectral density ¢q°(m) obtained from Eq.(1).

Setting ) _
3% |H(x 2
Py (0) = -1-[ [, | ] (14)
2 akf k=0
and
- 1 ©
Gi(w) = E-)—; I-m kf <Pf(}i,w) d%ﬁ (15)

and neglecting higher-order terms we may therefore write the

corrections (4) and (5) in the forms

3
A oglu) = og(w) = ¢4 (w) = 12£ Fy(w) Gy (w) (16)
v S - S S L 3
A32 =32 -a3==/[_, 1 Fy(w) G (w) du (17)
21 i=1.

The result obtained shows that the dynamic characteristics

of the structure and the statistical characteristics of the
load field may be handled separately in the computation of

the correction A @q(w); the former affect only the functions
Fij(w) and the latter the functions . Gj(w). It may be further
noted that, in the case of an isotropic load fileld, the three
functions Gj(w) are equal, Denoting thelr common value by

G(w) we may write for that case

3
b o.(w) = ['21 Fs(0)] G(w) (18)
1=
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Since the functions Gi(w) are non-negative, the correction
Ag? will be negative and the approximation (1) conservative
if the functlons Fi(w) are negative for all values of w, If
the functions Fi(w) are positive for all values of w, the
approximation (1) is clearly non-conservative. If the
functions Fi(“) have positive and negative values, the 1lnte-
gration in (17) must be carried out to determine whether the

approximation is conservative or not.

Before we turn our attention to the computation of the
functions Fi(“) we shall show that the expressions (16) and
(17) obtained for the corrections are of the order of L'z,
where L is the scale of the load field and that the terms
neglected in writing these expressions are of the order of
L'“ and higher. Introducing the dimensionless wave numbers
Ky = L k; and the corresponding vector x, we define the

function
?lgw) = (1/L)3 o (x/L,w)

and referring to Eq.(10), verify that the integral

1l
(2m)3

[ 2% (5, ©) a’ = ¢ (W)

is independent of the scale L., Substituting for ¢, in terms

of ¢% in (15), we write



Gi(uw) = }mw-ﬂl=—= Im k2 Q;f(l(',w) d3«
L2 (21!')3 = i n wA

which shows that the functions Gi(a), and thus the corrections

A ¢q(w) and & Q2 are for a given structure of the order

of L™, A similar analysis would show that the first of the

non-zero terms neglected in (13) 1s of the order of =",

3. Computation of the Functions Fi ()

The computation of the functions Fi(w) from the transfer
function H(k,w) itself would be quite cumbersome since 1t
would involve the determination of the response of the system
to trains of sinusoidal waves of all possible wave-lengths
moving in all directions and at every possible velocity. We
shall show in this section that they may instead be computed
from the response of the system to a few simple coherent

sinusoidal loadlings.
Noting first that
[H(k, ) |2 = H(k,0) H¥(k,w)

where H¥* denotes the complex conjugate of H, and substituting

in Eq.(14), we write

: * 211% 2
Fi(w) - 9dH 3H + l H 9°H + l H* 9 2 (19)
dky 9ky 2 aki 2 k4



But from Eq.(6) we have

aH(K ,w) @ -i
[__:zl_.]k=0 = - i f_m h(s,o0) s; e “I 43 do (20)
and
32H (k , w) - ,
~—— a0 = - |- h(s,0) s2 e~1¥% g3 4o (21)
3k52. ~ ~ 1 AN

Consider now the two particular deterministic sinusoidal

loadings

{wt .
fi1€£,t) =ri e” R fizgﬁ,t) = ri elut (22)

which, at any given i1sntant, are represented respectively
by a linear and a parabolic distribution of loads 1n the

r; coordinate. Recalling2 that the response of the system

to a load field an,t) is
alr,t) = {° h(s,s) f(r-s, t-o) d3s do
P - (e d [aadi ") Ana
and choosing the reference point at the origin of the system
of axes (r=0), we express the responses of the system to

the loadings (22) respectively as

Hyy(0) el = ["n(s,0) (-5,) 7 %(*=%) 435 a0 (23)
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t ~iw(tea)

Hy,(w) e = 7 h(s,o) sf e d3s do (24)

sl
where Hil and Hiz represent complex amplitudes. Comparing

(20) and (21) with (23) and (24) respectively, we easily
verify that

‘-aﬂ(ﬂlﬁ,w)

Jk=o =1 Hy(w),

[aZH(&,__w)
ki e

Substituting from (25) into (19), we have

File) = By (o) HE () = SH(w) BY,(0) + HX(w) Hyp(0)]
(26)

Introducing the phase angles 8(w) and 85,(w) of the complex
amplitudes H(w) and H;,(w), we may express the functions

Fi(w) in the alternate form
F.(w) = |H () |2 = [H(w)| [H;,(w)| cos (8;,-8) (27)

We note that H(w) is obtained from the response of the
system to the uniform coherent sinusoidal loading ei“’t and
that 1ts determination is part of the simplified analysis
based on Eq.(1)., Thus, in the most general case, the
computation of the functions Fi(m) and of the correction

A ¢q(w) depends on the determination of the response of the
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system to the six simple deterministic loadings defined in
(22)., Note that in many applications one will be concerned
with the spacewlse varlation of the load field in one dimen-
sion only; the computation of the correction a ¢q(w) will
then require the determination of the response of the system

to only two loadings,

y, Example

As an example of application of the proposed method we
shall consider the rigid beam of length 2b shown in Fig.l.
The beam is subjJected to a random loading f(x,t), of scale
L large compared to b, and the response q(t) of interest is the
acceleration of the right-hand tip of the,beam‘(x=b); The
beam is supported by two identical springs located at distance
2 from its center, and we assume for simplicity that the
system 1s undamped. This assumption precludes the determi-
nation of thevmean square of the response, but it facilitates

the discussion of the correction A ¢q(w)°

We assume that the simplified analysis based on Eq.(1),
i.e.4 on the assumption of a coherent loading, random in time
only, has Peen carried out and that the corresponding
approximafe expression ¢q°(w) for the power spectral
density has been obtained. This computation requires the

determination of the conventional transfer function H(w)
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representing the complex amplitude of the response of the
system to the uniform sinusoidal loading of Fig.2a,
Denoting by M the mass of the beam, by wo 1ts natural fre-
quency in the translational mode, and by u its centroidal

radius of gyration, we have

2bw?
M(w2=-wg)

H(w) = (28)
The computation of the correction a ¢q(“) necessitated
by the spacewise variation of the load field requires the
determination of the response of the system to the two
additional loadings shown in Figs.2b and 2¢. The corres-

ponding complex amplitudes are

Hy(u) = —2£3) bluZ

(29)
M(uzwz-azmg)
and
Hy(w) = (2/3)bw? (30)

M w2-u2)

Substituting from Eqs.(28); (29), and (30) into Eq.(27),
assuming that the beam is a slender rod (u? = b2/3), and
observing that for a rigid beam the responses to the loadings

(a) and (c) are in phase (8, = 8), we have
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2.4 o
Flo) = 22 | b2 -1 ] (31)
M2 (b2w2-322u2)2  3(w2-wl)?2

or, setting (w/w,)2 = u and (a/)? = v,

Flo) = 20% 1 1 (32)
M2 (u=3v)2 3(u=-1)2

The regions of the uv plane for which F(w) is positive and
those for which 1t is negative are shown in Fig.3.

Let us first consider the case where the springs are
attached at the tips of the beam (a = b), which is repre-
sented in Flg. 3 by the horizontal line v = 1, At low
frequencles, the beam responds less readily in rotation
than in translation; we have F(w) < 0 and, from Eq.(18),
A ¢q(w) < 0, which indicates that the correct value of
¢q(w) is smaller than the approximate value ¢q°(m) obtained
from Eq.(1). This condition persists as w and u increase
and as we pass through resonance in translation (u = 1),
However, for higher frequencies the situation is reversed;
the beam responds more readily in rotation and we have
F(w) > 0, A¢q(w) > 0, If we now choose a value of a
smaller than the radius of gyration b/v3 of the beam, cor-
responding to the dashed horizontal line in Fig.3, we find

that at low frequencies F(w) and A¢q(w) are positive and

the correct value of ¢q(w) is larger than the approximate
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value ¢q°(w) qbtained ffom Eq.(1). The situation persists
as w increases and as we pass through resonance in rotation
(v = u/3), but reverses itself as we approach and pass
through resonance in translation (u = 1). For higher
frequencles, the beam responds again more readily in réta-

tion and F(w) becomes positive,

5. Conclusion

It has been shown that the effect of spacewise va-
riations in a random load field on the response of a multi-
dimensional linear system may be determined by computing
the response of the system to a few simple deterministic
loadings, provided that the scale of the field is large.
This approach makes 1t possible to determine whether a
simplified analysis based on the assumption of no space-
wise variations in the load field is conservative or not.
It also yields the correction A¢q whilch should be added to
the value of the power spectral density obtained from the
simplified analysis. While the effect of this correction
on the value of the mean square g2 of the system response
has been emphasized in our presentation, it should be noted
that the corrected value of the power spectral density
¢q(m) may be used to determine many other statistical
characteristics of the response which depend directly upon

¢q, such as the expected number of crossings of a given
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level per unit time, the expected number of maxima or
minima of the response per unit time3, the probability of
exceedance of a gilven level during a given time interval,
etc., In view of the present renewal of interest in large
transport airplanes, it is believad that the approach

presented here will find many useful applications.
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